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ABSTRACT. In this paper we present a refined version of the Newton polygon 
process to compute the Puiseux expansions of an algebraic function defined 
over the rational function field. We determine an upper bound for the bit- 
complexity of computing the singular part of a Puiseux expansion by this 
algorithm, and use a recent quantitative version of Eisenstein's theorem on 
power series expansions of algebraic functions to show that this computational 
complexity is polynomial in the degrees and the logarithm of the height of the 
polynomial defining the algebraic function. 

1. INTRODUCTION 

In [11] a method for computing the Puiseux expansions of an algebraic function 
is described. The method is a combination of two procedures. The first procedure 
goes back to Puiseux [17] and is described in [22] and [1]. This procedure is used 
in [11] to compute the singular part of a Puiseux expansion. Once the singular 
part is computed by this method, one then uses a second procedure to compute 
as many terms of the expansion as desired, in a very simple and efficient manner. 
The purpose of this paper is to provide a refined, ready-to-implement, version of 
the procedure to compute the singular part of a Puiseux expansion at x = 0 of an 
algebraic function y defined by F(x, y) = 0, with F E Q [x, y], and apply a recent 
quantitative version of Eisenstein's theorem on power series expansions of algebraic 
functions in [8] to prove that the complexity of this algorithm is polynomial in 
degx F, degy F, and the logarithm of the height of F. 

In [11], a polynomial complexity bound for the number of coefficient operations is 
computed. Unfortunately, this analysis does not take into consideration the size of 
the coefficients appearing in F, and hence does not provide a polynomial complexity 
bound for the number of bit operations. It is worth noting that Chistov [3] has 
shown that the algorithm of Puiseux has polynomial-time bit-complexity, but no 
explicit complexity bound is determined. For other work on the computation of 
Puiseux expansions the reader is referred to [4], [5], and [7]. Note that in each 
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of these papers, as in [11], a complexity bound for computing Puiseux expansions 
is computed which does not take into account the size of the integers involved 
in the calculations. We note that in this paper we only consider the case that the 
polynomial F(x, y) defining the algebraic function has rational coefficients. One can 
generalize our result to the case that F(x, y) has algebraic coefficients by employing 
the quantitative version of Eisenstein's theorem proved by Schmidt in [18]. 

There are several applications of a polynomial-time algorithm to compute the 
singular part of Puiseux expansions of an algebraic function. These include a 
polynomial-time algorithm to factor polynomials F E Q[x, y] into irreducibles in 
Q((x)) [y], a polynomial-time algorithm to compute an integral basis of an algebraic 
function field, a polynomial-time algorithm to resolve the singularities of an alge- 
braic curve, and a polynomial-time algorithm to compute the genus of an algebraic 
curve. We remark that Theorem 1 solves an open problem stated in [18, p. 90], 
wherein several other applications of the result of Theorem 1 are discussed. Some 
of these applications will be the subject of future work, although a polynomial time 
algorithm to test the irreducibility in Q((x)) [y] of a polynomial F E Q[x, y] has 
been described in [23, Chapter 4]. 

Acknowledgments. The author would like to acknowledge Professor C. L. Stew- 
art, Professor H. W. Lenstra, Jr., Professor A. Lenstra, and the referee for their 
helpful suggestions during the course of this work. 

2. NOTATION AND PRELIMINARY RESULTS 

We now present some notation which will be used in this paper. 
Let 

(2.1) F(x,y) = An(x)y' + An_1(x)y- 1 + * + Ao(x) 

be a bivariate polynomial with rational coefficients such that An (x) 7& 0. The 
denominator of F, denoted by denom(F), is the smallest positive integer v such 
that vF has integer coefficients. The height of F, denoted by ht(F) is the maximum 
of denom(F) and the absolute value of the coefficients of denom(F) * F. Let 

n 

F(x) = Z aix' 
i=O 

be a univariate polynomial of degree n with complex coefficients. The length of F, 
denoted by IFI, is given by 

n 1/2 

IFI= ( lai12) 

The leading coefficient of F is an, and is denoted by lc(F). If F is a nonzero 
polynomial with integer coefficients, then the content of F, denoted by con(F), is 
the greatest common divisor of its nonzero coefficients. 

Let a represent an algebraic number. Then P, (x) will denote the unique irre- 
ducible polynomial with integer coefficients, positive leading coefficient, and content 
equal to one, with a as a root. The denominator of a, denote denom(a), is the 
smallest positive integer iv such that va is an algebraic integer. If a = a('), . . ., a(r) 

are the roots of P,(x), then I&lal = maxl<i<r &l(i)I is the house of a. If k is a sub- 
field of Q(a), then a defining polynomial of a over k will be denoted by P,, where 
k will be made explicit so that no confusion will arise. Such a polynomial is only 
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required to be irreducible over the subfield k and have a as a root. Let F(x) be a 
polynomial of degree m in Q(a)[x], with n = [Q(a): Q] and 

m n-1 

F(x) = E E aijai&xi. 
i=o j=o 

The Q(a)-height of F is given by 

Fmax = max{ aij,J} 
z,J 

In every instance that this notation is used, a will be made explicit so that there 
is no ambiguity. 

Let K be a field, and F,G E K[x,y], with F(x,y) = An(X)yTn + + Ao(x) 
and G(x, y) = Bm (x)ymTL + * * * + Bo(x), of degrees n and m in y, respectively. The 
resultant of F and G with respect to y, denoted by resy (F, G), is the determinant 
of the (n + m) x (n + m) Sylvester matrix, whose entries are the coefficients of F 
and G regarded as polynomials in y. The reader is referred to [2, p. 24] for more 
details. 

Let F(x, y) be as in (2.1). Then the equation 

F(x, y) = 0 

defines an algebraic function y whose values depend on x. For any point zo in the 
extended complex plane C U {oo}, Puiseux's theorem asserts the existence of n 
distinct expansions of the form 

00 

yi (x) = E Ck, i (Z1/ei),k 

k=fi 

where cfi,i 7& 0, z = x - zo if zo E C, z = x-1 if zo = ox, and Zl/ei is an eith root 
of z for 1 < i < n. The integers ei, 1 < i < n, are the ramification indices of y 
at the point zo. The ramification indices are positive integers bounded by n. We 
note that a ramification index e of a Puiseux expansion is defined to be minimal in 
the sense that for all prime divisors p of e there is an index k for which p does not 
divide k and Ck 5 0. 

Let 
00 

(2.2) y(x) -E CkZk/e 
k=f 

be one of the Puiseux expansions of y at a point zo. The regularity index of the 
expansion y(x) is the least integer T* with the property that no other Puiseux 
expansion of the algebraic function y at zo has the initial partial sum ZI-f CkZk/e. 

The singular part of the expansion y(x) is defined as the initial sum 

T* 

(2.3) YT* (X) = E Ck/e 
k=f 

By the preliminary transformations described in [11, p. 247], it is sufficient to 
consider the case that zo = 0. The series Z??=O ck+f kis a root of the polynomial 
H(x,y) = F(xe,xfy), and it is evident that degyH = n, and deg.H < 2mn. 
Therefore, it follows from [9, Theorem 4.5] that T* < 4mn2. 
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Our object of study will be the computation of the singular part of the Puiseux 
expansion y(x), which is of the form 

(2.4) YT(X) = a1xa' + * + aTXl+ + T 

where T is the number of nonzero terms in the singular part of y(x), a,,... aT 
are nonzero algebraic numbers and '71, ^Yi + IY2,... ,)/1 + ... + -YT are nonnegative 
rational numbers given in reduced form. Note that T < 4mn2, where m = degx F 
and n = degy F. 

What is meant by computing the expression in (2.4) is to have computed the 
reduced form of 'Yl +* * + -yi for 1 < i < T, P,c where a is an algebraic integer with 
Q(a) = Q(al,...,aT), along with polynomials Pi(x), i = 1,...,T, with rational 
coefficients, of degree no greater than [Q(a): Q] - 1 such that ai = Pi(a) for each 
i. This completely describes the element yT(x) of (2.4). 

In the complexity analysis we will measure all steps in bit operations. By [10, p. 
260, Theorem A], given any E > 0, one arithmetic operation on two integers of size 
k-bits requires O(kl+e) bit operations. 

Let F(x, y) be as in (2.1), with n = degy F, m = degx F, and h = ht(F). The 
goal of this paper is to prove the following result. 

Theorem 1. Let E > 0. The singular part YT(x) in (2.4) can be computed in 
O(n32+Em4+e . log2+, (h)) bit operations. 

By using the method of Kung and Traub in [11], after computing the singular 
part one can then compute as many terms of a Puiseux expansion as required in 
a very efficient manner. Using Theorem 1, one can compute a polynomial-time 
complexity bound for the number of bit operations required to compute k terms of 
a Puiseux expansion. We forgo this analysis. 

We now state some known results which will be required for the complexity 
analysis given in the final section of this paper. The following quantitative version 
of Eisenstein's theorem follows immediately from the proof of [8, Theorem 1]. 

Theorem A. Let G E Z[x, y] be a nonzero polynomial which has no multiple fac- 
tors when regarded as a polynomial in y. Let m = degx G, n = degy G, and 
h = ht(G). If the formal power series y(x) = Zk=O bkxk satisfies C(x, y(x)) = 0, 
then there is an integer B with 

(2.5) B < 4.8(8e-3n4+2.74lognel 22nh2(1 + m)2)n, 

for which.Bm+kbk is an algebraic integer for all k > 0. 

The important feature of this result is that B is singly exponential in the degrees 
of the polynomial G(x, y). A singly exponential result was first obtained by Wolf- 
gang Schmidt in [18]. Quantitative versions of Eisenstein's theorem prior to this, 
for example in [6] which had B of the form h' with u = (4n)3nm, would not have 
been sufficient to prove a polynomial-time bit-complexity bound for the computa- 
tion of Puiseux expansions. The following result of [14] is A. Lenstra's extension 
to algebraic number fields of the well-known result of [15] on factoring polynomials 
with rational coefficients. 

Theorem B. Let D be a positive integer and let a be an algebraic integer of de- 
gree m. Let f(x) be a monic polynomial in DZ[a][x] of degree n > 0. Then there 
is an algorithm to factor f(x) into monic irreducible polynomials in j ZZ[a] [x], 
d = disc(P,c), which requires O(n6m6 + n5m6 log(m . JPoJ) + n5m5 log(D * fmax)) 
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arithmetic operations. The size of the integers on which these operations are per- 
formed is 

O(n3m3 + n2m3 log(m. IPc) + n2m2 log(D - fmax)). 

Moreover, if h(x) is an irreducible factor of f (x), then 

hmax < fmax [2(n+ 1)2m(m ) () (m-1) disc(P -1/2 

where r = degx h. 

We will also require the following result on the complexity of computing the 
greatest common divisor of univariate polynomials. The rational case can be found 
in [2], while the number field case is in [13]. Recall that the greatest common divisor 
of two polynomials is assumed to be monic. 

Theorem C. 
i. Let f and g be polynomials in Q [x], of degree m and n, respectively. Then 

gcd(f, g) can be computed in O(max{log f , log Ig}2 . max{m, n}4) bit opera- 
tions. 

ii. Let a be an algebraic integer of degree m. Let f and g be polynomials in 
Z[a] [x] of degree bounded by n. Then the greatest common divisor of f and g 
in Q[a] [x] can be computed in 

O((n5m3 + n4m5) log2(n * max{fmax gmax} * (ht(Po,))m)) 

bit operations. 

3. THE NEWTON POLYGON ALGORITHM 

In this section we give a detailed description of the Newton polygon process. 

One iteration of this procedure computes one term of the Puiseux expansion y(x), 
at x = 0, of the algebraic function y defined by F(x,y) = 0, where F E Q[x,y], 

and is given in (2.1). We let n = degy F, m = degx F, h = ht(F), and we make the 

assumption that disc(F) 54 0, so that the n Puiseux expansions of F at x = 0 are 

distinct. By the transformation described in [11, p. 247], it is sufficient to consider 

the case that An (0) 54 0. In this case, none of the Puiseux expansions of y at x = 0 

have terms with negative exponent. 

Let the Puiseux expansion y(x) be represented by 
00 

(3.1) y(x) = Eakxa1+ +^ k 
k=1 

where ak 7& 0 for all k > 1. For k > 1, let yk(x) denote the partial sum 
k 

(3.2) Yk(X) = Eaixy1+ +7i 
i=l1 

and define yo(x) = 0. Let -yj = ei/fi, with ei, fi E Z, ei > 1, and gcd(ei, fi) = 1. 
Let Ei = lcm(el,.. ., ei) for i > 1. 

Let T be the number of nonzero terms in the singular part of y(x), then YT (X) is 
the singular part of y(x), and no more than T < 4mn2 iterations of the procedure 
described below are required to compute the singular part of y(x). 

For k > 1, k-l will denote an algebraic integer with the property that Q(k- 1) 

= Q(al,. . . ,ak 1). Also, for k > 1 and 0 < i < k - 1, we define Pi,k1(X) E Q[X] 
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with deg.Pi,k-1 < [Q(ak): Q] such that ai = Pi,k-l(ak-l). For k > 1, the 
polynomial Fk-l(x,y) E Q[xl/Ek-1, y] is defined as 

Fk-l(x,y) = x-p1 8k-1F(x,x-1l+''+ak-1 (y + ak1) 

+ 2ak-2+ * * * + xaiaj), 

where the segment on the Newton polygon chosen during stage i of the Newton 
polygon process lies on the line y + -yix = f3i for i = 1, . . . , k - 1. 

Finally, let ao = ao = 1, Fo(x,y) = F(x,y), and Ao,i(x) = Ai(x) for 0 < i < n. 

Input into Iteration k of Algorithm 1 (k > 1). 
i. P,k-l (x), the minimal polynomial over Q of ak-l. 

ii. The polynomials Pi,k-I (X) for i = 1, . . . , k - 1. 
iii. Pai (x), the minimal polynomial over Q of ai, for i = 1,..., k - 1. 
iv. Nonnegative rational numbers 1Y1,... , Yk-i in reduced form and nonnegative 

integers ,1 .. . ., 3k-1- 
v. The polynomial Fk_1 (x, y) given in the form 

Fk-1(x,y) = 
Ak-l,(X)Y' + * * + Ak-l,o(X), 

where Ak-1,i(x) E Q(ak-l1) [Xl/Ek-1] for 0 < i < n. 

Output from Iteration k of Algorithm 1. 
i. An algebraic integer ak such that Q(ak) = Q(a,... ., ak), defined over Q by 

its minimal polynomial Peak (x). 
ii. Polynomials Pi,k(x) E Q[x] with degx Pi,k < [Q(ak): Q] and ai = Pi,k(ak) 

for 1 < i < k. 
iii. The coefficient ak, defined over Q by its minimal polynomial Pak (x). 
iv. The rational numbers 1Y1,... ,k, and the integers ,1.... ,3k- 
v. The polynomial Fk(x, y) = x kFk_l(X,X k(y + ak)) in the form 

Fk(X, y) = Ak,n(X)yTn + * + Ak,o(x). 

vi. The kth partial sum of y(x), which is yk(x) = 1aix + 

Algorithm 1. 

Step 1. For each i with 0 < i < n, such that Ak1l,i(x) 7& 0, compute ak-1,i, 

which is defined to be the highest power of x dividing Ak_1,i(x). For i = O, .. ., n 
with Akl1(x) 54 0, put Xk1l,i = (i,ak-1,i) and compute the equations of all lines 
Ll... , LIk which are segments of the lower convex polygon determined by the 
Xk-l,i 

Step 2. If k = 1 choose any line Lj. If k > 1 choose any line Lj with negative slope. 
Let y + -kX = Ak be the equation of this line. Let Gk denote the set of indices i for 
which Xk-l,i lies on Lj, and put 

Pk(X) = (E ak-liX.) X Ik, 

iEGk 

where ak_1,i is the coefficient of XOk-l,i in Fk- 1(x, y), and Ik E Z is chosen so that 
Pk(0) $? 0 and Pk(X) E Q[ak -1][x]- Write Pk(X) = Pk,dk(ak-1)X dk+- *+Pk,o(k-1), 

where dk = degxPk(x), Pk,j(x) E Q[x] and degxpk,j(x) < [Q(ak-1): Q] for 
0 < j < dk- 
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Step 3. Compute 

N = NORMQ(O,k-l )/Q (Pk,dk(ak-1)) 

by 

N = resX (Pa k 1(x),pk,dk(x)), 

and then compute qk(x) E Q[x] with degx qk(X) < [Q(ak-1): Q] such that 

qk (ak-1 ) * Pk,dk(ak-1) = N. 

Finally, compute the monic polynomial Pk*(x) = (qk(k- 1)/N) Pk(x). 

Step 4. Factor Pk*(x) in Q[ak1] [x], and choose any irreducible factor Pak, which 
defines a new algebraic number ak over Q(ak-l)- 

Step 5. Determine if (Pak)2 divides Pk*(x) in Q[ak -1][x]. If it does not, then k = T, 
the number of nonzero terms in the singular part of y(x). 

Step 6. Compute Pak by the following steps: 

i Compute Rk (x) = rest (Pk - 1 (t), Pak (x, t)), where Pak (XI t) is obtained from 

Pak(X) by replacing ak-1 by t. 
ii. Compute R*(x) = Rk X) k gcd (Rk, R') 

iii. Compute Ck E Q so that CkR*(x) E Z[x] and is primitive. Then Pak(x) = 

CkRk~~~~~~~ 
Pak 

-X Ck R *(x). 

Step 7. Put Bk = lc(Pak), and ak = Bkak, so that ak is an algebraic integer. Put 
rk = degx Pak and compute Pak B'klPak (x/Bk). 

Step 8. If Pak is linear, put ak = ak-l, tk = 0 and_Pi,k(x) = Pi,kl(x) for 1 <i< K 

k - 1. Define Pk,k(X) by ak = Pk,k(ak-1), where Pak = x - ak E Q[ak-1][x], and 
then proceed to Step 11. If Pak is not linear, then proceed to Step 9. 

Step 9. Compute a new algebraic integer ak, given by 

ak = ak-1 + tkak, tk E Z, 

where tk is chosen such that Q(ak) = Q(ai,.. . ak) by the following steps. 

i. Factor Pi! into irreducible factors in Q[ak1][x].- 

ii. For each irreducible factor q(x) obtained with degx q(x) = degx Pak, deter- 

mine if (lc(Qj q(x)) - Pak(X) If so, then q(x) Pak(X), the defining 
k 

polynomial of ak over Q(ak-l). 
iii. For t = 1, 2,.. n,r2 compute r(x, t) = resy(x-y-k-l, trkPk(y/t)). Choose 

tk so that degxr(x,tk) = max1<t<n2{degxr(x,t)}, and put ak = a!k-l+tkak- 

Put Palk(X) = r(x,tk), a defining polynomial of ak over Q(ak-1). By the 
result in [21, p. 139], ak is a primitive element of Q(ai,... , ak). 

iv. Compute Peak (x) by the following steps: 
a. Compute Sk(X) = rest(Pc1k 1 (t), P, (x, t)), where Pk (x, t) is obtained 

from Pk(x) by replacing ak-1 by t. 
b. Compute S* (x) = gdSk SX)~ 

k() gcd(Sk,Sk)' 

c. Compute Dk E Z so that DkS*(x) E Z[x] and is primitive. Then 
PcOk (X) = DkS*(X). 
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Step 10. Represent al, ... , ak in Q(ak) by the following steps: 

i. Compute gcdQ(cak)(Pcakl (ak - tkX)I Pak(x)) = X -ak E Q[ak][X] to obtain 
ak = Pk,k(ak)- Put Pk,k(X) = (Blk)Pk,k(X). 

ii. For each i with 1 < i < k - 1, the following steps: 
a. Factor Pd (x) into irreducible factors in Q [ak] [x]. 
b. Put Qi,k(X) = Pi,k-1(X - tkBkPk,k(X)) so that ai = Qi,k(aIk) 
c. For each monic linear factor x - Q(ak) of P-i(x) obtained in a (above), 

check if P"'k (x) divides Q(x) - BiQi,k (x) in Q [x]. If so, then put Pi,k(x) = 

Bi Q(X) 

Step 11. Put Yk(x) = aixl ' + * + akXYl +--+Yk and compute 

Fk = X /3kFk_ (X,XYk(y + ak)) 

in the form 

Fk(x, y) = Ak,n(X)yn + * + Ak,o(x) 

with a,, . .. , ak E Q(ak), and Ak,n (X), .. , Ak,O(X) E Q(ak)[x]. Let k = k + 1. 

4. COMPLEXITY OF ALGORITHM 1 

The purpose of this section is to compute an estimate for the number of bit 
operations required to compute the singular part of a Puiseux expansion at x = 0 
of the algebraic function y defined by F(x,y) = 0, with F(x,y) in (2.1). This is 
accomplished by first proving estimates for the size of the quantities appearing in 
Algorithm 1 and then performing a complexity analysis on each step in Algorithm 1. 

Lemma 4.1. Let P(x) = an (a)Xn + * * * + ao (a) E Z [a] [x], where a is an algebraic 
integer of degree d over Q and height h, and put N = NQ(Q)/Q(an(a&)). Put A = 
ht(an(x)) and let Q(x) E Q[x] be the polynomial -which satisfies deg, Q(x) < d - 1 
and Q(a)an(a) = N. Then the following inequalities hold: 

i. I NI < (dhA) d. 

ii. ht(Q) < d(5d-3)/2 (h + l)d(d+l)/2A(3d-1)/2; 

iii. denom(Q) < dd(h + l)d2+dA2d 

Proof. By [16, Theorem 1], N = rest (an(t), PQ(t)), and so by Hadamard's determi- 
nantal inequality (for example, see [9, 1.3(v)]), 

d 1/2 d \1/2 

Let Q(a) = xdlald- 1 + * * + xo and an(a) = Ad_lxd -1+ + Ao, so that 

(4.1) XdljAd-lja2d+2 + + (x Ao + + xoAj)a& + + xoAo = N. 

Equation (4.1) yields d linear equations in the d unknowns XO ... ., Xd_1 . By replac- 
ing each power ai, with j < d-1, in (4.1) by its unique representation as a linear 
combination of 1, z,.. , d-1, and collecting terms, one obtains by Cramer's Rule 
that 

(4.2) xi = det(Mi) ? < i < d -MI (4.2) ~~~~~~det(M)' - _ 
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where M is the resulting matrix of the system, and Mi is obtained from M by 
replacing column i + 1 of M by the column with N in the last entry and zeros 
elsewhere. By a simple inductive argument it is easy to prove that 

(4.3) (t) max h(h + )t-n 

for all t > n. Therefore, each entry of M is a rational number whose absolute value 
is no larger than (h + l)dld2A. The same bound holds for all entries of Mi, except 
for the lone entry of N in position (i, d). Thus, by part (i) above and Hadamard's 
inequality, 

d-1 1/2 

Six1 < (dhA )d (i dd2(h + 1)dA) < d(5d-3)/2(h +I)d(d+l)/2A(3d-l)/2 

and 

denom(Q) = max {denom(xr)} < det M - det Mi < d4d(h + 1)d2+dA2d. 
O<i<d-1 

Lemma 4.2. Let P(x) = = ai(a)xz E Q[a][x], where a is an algebraic number 
of degree d and height h, and deg, ai(x) < d - 1 for 0 < i < n. Let Q(a) and N be 
as in Lemma 4.1, and define 

P* (x) P(X). 

Then 

(P*)max < d3 (h + M)d2p2d 

and 

denom(P*) < N * denom(Q) . denom(P). 

Proof. FRom the definition of P* it is evident that 

denom(P*) < N * denom(Q) . denom(P). 

For 0 < i < n, Q(a)ai(a) is an expression of the form described in (4.1). From 
(4.1) and (4.3) we deduce that 

(P*)max d 2QmaxPmax max ht(ai) 

< d2d(5d-3)/2 (h + 1)d(d+l)/2(Pmax)(3d-1)/2h(h + 1)d1 

d3d(h1 1\d 2p2d <d (h+1 Pmax. 

Lemma 4.3. Let all of the notation be as in Algorithm 1. Also, let 

A= max{llakI and B = max {Bk}. 

1. ht(PQk) < (8n4mBA)n for 1 < k < T. 
2. ht(Pik) < (2BA)n for 1 < k < T. 
3. ht(Pak) < B(2A)n for 1 < k < T. 
4. log(ht(Pi,k)) = O(n2log(nmBA)) for 1 < k < T and 1 < i < k. 
5. lg((Pk)max) = 0(n2log(nmBA)) for 1 <?k < T. 
6. log((Pk*)max) = O(n3log(nmBA)) for 1 < k < T. 
7. log(denom((Pk*)max)) = Q(n3 log(nmBA)) for 1 < k < T. 

8. log((Pa2)max) - O(n2log(nmBA)) for 1 < k < T. 
9. log(ht(Rk)) = O(n3log(nmBA)) for 1 < k < T. 
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10. log(denom(R*)) = 0(n3 log(nmBA)) for 1 < k < T. 
11. log(ht(denom((R*) * R*))) = O(n3 log(nmBA)) for 1 < k < T. 
12. log((Pa ) O(n2 log(nmBA)) for 1 < k < T. 

Proof. 

1. ht(P,Qk) < ht(fJln> x+ 11ak l) < 2 nlak lln, and the result follows from the bound 
Ilakll = ||Bala + tlB2a2 + * + tk-1Bkakll < TBAn2 < 4n4mBA. 

2. ht(P k) < ht(Hln>1(x + Ildk1j)) < 2n BnAn. 

3. ht(Pak) < ht(Bk H 1(x + Ilak 11)) < B(2A)n. 

4. From the bound in Theorem B with f(x) = P-djx), a = ak, and h(x) = x-ai E 

Q[ak] [XI, we obtain 

ht(Pi,k) < B . ht(Pd)(2(n + 1)2n3n n *2)1/2PQk 12n 

< 2n B n+ An(2(n + 1)2n3nn . 2)1/2(\/fY)2n ht(PQ'k )2n, 

and the result follows from Lemma 4.3 1 above and taking the logarithm of the 
result. 

5. We have, from the input into Algorithm 1, 

Fkl(x,y) = x-01-02 - k- 1F(x, XY1l+Y2+**+Yk-1 (y + ak-1) + *+ xlal) 

- 
Xd 

~2 k [An (x) (x 71 +Y2 +-+Yk - ) n ( p kl kl(- )fl)) 

Therefore, since (Pk)max ? (Fk-l)max, we have that 

***m<akx_ {((7P,k-1 (k_k-1)) )max} 

x () x(^t+^t+1?j?kk-ny1 

< nn+322nl+2m* h. ( (<m<akx {(P,_X) 

n<jBk-1 

(P *a h(nl + .) .2 .n + 1)(n+-1) 
n 

nn+322n+ 2mh( max {ht(Pj,k-1 (X))})n 

1<j<k-1 

*nn+2 max {ht(a')}. 

The result now follows by taking the logarithm of this last estimate, and then 
applying Lemma 4.1 along with the bound in Lemma 4.3 4 for log(ht(Pi,k)) given 
above. 

6. 

(Pk)max < ht(qk) * (Pk) max * n 2 . max {ht(a')} (Pk 
~~~~~~1<I<2n 

< n3n (ht(P ) + k)3n n2 ht( 1 )fl+ 

< n32 (ht(PQk -) + 1)2n 2(Pk) max 

The result follows by using Lemma 4.3 1 above, taking the logarithm of this last 
estimate, and using the bound obtained in Lemma 4.3 5 for (Pk)max. 
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7. 

denom(Pk*) < N * denom(qk(x)) * denom(Pk) 

? ( ht(ak-l)(Pk)max) (n (ht(PQk _) + 1)fl+nl (Pk)2n )1/2 Bn 

< n3nBn(ht(Pckl1) + k m ax, 

The result follows by using Lemma 4.3 1, taking the logarithm of this last estimate, 
and using the bound obtained in Lemma 4.3 5 for (Pk)max. 

8. Applying the bound in Theorem B to f - 1 . Pak) with a = ak-1, one 
lC(Pak) 

obtains 

(Pak)max < ht(Pak)(2(n + l)2n3n 22 )112ht(P' k)2 n- n 

The result follows by applying Lemma 4.3 1 and 3, along with taking the logarithm 
of this last estimate. 

9. FRom the definition of resultant, we obtain the estimate 

ht(Rk(X)) < (2n)2n ht _1)n + *n + Xn-l) 

< (2n)3 ht(Pk n ) (Pak)nax 

< 2 2nn 3n ht(Pk-l)n ( ak) na 

The result now follows by taking the logarithm of this last estimate and using 
Lemma 4.3 1 and 8. 

10. FRom [20, Theorem 2.1], there is a positive integer r and u/v E Q such that 
Rk(X) = (u/v)Park. Therefore, since R' (x) = (ru/v)Park , and gcd(Rk,R') = 

(Pak))r1- it follows that Rk(x) = (u/v)lC(( 1-Pak. Therefore denom(Rk) ? 
1C((Pak)) kPc(Tak)r-:) 

ht(Pak )n denom(Rk), and once again using Theorem B we obtain, 

denom(Rk(x)) ? (denom(Pa))n < (ht(Pak) disc(P ))n 

We now estimate disc(P k), for 1 < k < T. Note that disc(Pak) = resx(P k,Pak) 
and so by Hadamard's inequality and Lemma 4.3 1, disc(PQk) < (n . ht(P k))n < 
nn(4n3mBA)n 2. The result now follows by combining the above estimates, applying 
the estimate in Lemma 4.3 1, and taking the logarithm of the result. 

11. FRom the argument in Lemma 4.3 10 R* = (u/v) (1C(Pa )r Pak, and so 

(denom(R*)) R = uPak. Therefore, 

u ? lc(u. Pak) = lc(denom((R*) * Rk)) 

= denom(Rl ) lc(R k) 

= denom(R*) lc(Rk) 

<denom(R*) ht(Rk). 

Therefore, ht(denom(R*) * R*) = u * ht(Pak) < denom(R*) ht(Rk) ht(Pak). The 
result now follows from Lemma 4.3 10, 9, 3, and taking the logarithm of both sides 
of this last estimate. 

12. This is another application of Theorem B, with f = Pdk and a = ak-l1 
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Lemma 4.4. Let M = (mi,3) be an n x n matrix with entries that are polynomials 
with integer coefficients in t variables x1, ... ,Xt such that degx, mi,j < d for 1 < 
k < t and ht(mi,j) < h for all 1 < i, j < n. Given any E > 0, the number of bit 
operations needed to compute the determinant of M is 

O(n4+e(log1+E (dh)) (dn + 1)2t) 

Proof. If W(L, D, H) denotes the number of bit operations required to multiply 
two rational polynomials in L variables of degrees bounded by D in each variable, 
and height bounded by H, then W(L, D, H) = O((D + 1)2L logl+e (H)). To see 
this, observe that the polynomials being multiplied are the sum of at most (D + 1)L 

monomials, and hence the overall work requires at most (D + 1)2L multiplications 
on integers whose absolute value is bounded by H, and then some additions to 
recover the product. The multiplications dominate the overall complexity, and so 
the result follows from the fact that a multiplication on two integers of size k bits 
each requires at most 0(kl+e) bit operations. 

If the first column of M is all zero, then det(M) = 0. Otherwise, O(n2W(t, d, h)) 
bit operations are required to produce a nonzero element in the first row of this 
column, and zeros below. Similarly, for column i, either the entire column is zero, 
in which case det(M) = 0, or else O((n + 1 - i)2W(t, id, d-1h')) bit operations 
suffice to produce a nonzero element in position (i, i) of the matrix, and zeros below. 
The work to multiply the diagonal of the resulting upper-triangular matrix is no 
greater than the work performed in producing the upper-triangular form, and so 
the total work is O(n3W(t, nd, (dh)n)). The result now follows from the estimate 
given above for W(L, D, H). 

Proof of Theorem 1. In this analysis, we will use the fact that given any E > 0 an 
arithmetic operation on two integers of size k bits each requires at most 0(kl+e) bit 
operations. We will also assume that the iteration being performed is computing a 
term in the singular part of y(x). In other words, we will assume that k < T, and 
so k < 4mn2. 

The work in Step 1 is the computation of the equations of at most n lines, each 
one determined by a pair of points Xk-1,i and Xk1,i. The coordinates of these 
points are integers whose absolute value does not exceed kn2 + m. This bound 
follows from the fact that degy Fk = n and degx Fk < m + Zj=j Vyin for all k > 0, 
together with the estimate '/k < n for each k > 1. Since we are assuming that 
k < 4mn2, the number of bit operations required to complete Step 1 is therefore 
O(nlog+e (nm)) for any E > 0. 

The work required to perform Step 2 is to write down the polynomial Pk (x) in 
Q[ak-l][x]. The number of bit operations required is O(l0g((Pk)max)), which by 
part 5 of Lemma 4.3 is 0(n2 log(nmBA)). 

The work required in the first part of Step 3 is the computation of at most n + 1 
determinants of matrices of size no larger than 2n, whose entries are polynomials 
in one variable, with rational coefficients, of degree bounded by n, and of height 
bounded by (Pk)max. By part 5 of Lemma 4.3 and Lemma 4.4, the number of bit 
operations required is 0(n9+e logl+e (nmBA)). 

We remark here that, as a consequence of [10, Theorem A, p. 260], the number 
of bit operations required to multiply two polynomials, f and g, with rational 
coefficients, and of height bounded by a number H is O(deg(f) . deg(g) . log1+e(H)). 
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The work in the latter part of Step 3 involves multiplying qk(ak-1)/N to each 
coefficient of Pk(x). By Lemma 4.1, parts 1 and 5 of Lemma 4.3, and the above 
observation regarding the number of bit operations needed to multiply polynomials, 
we get that the number of bit operations required for Step 3 is 

0(n n 2 logl+'(ht(qk (X)))) 

= 0(n3 . log 1+E (n33n ht(PCQk ) 1)2 (Pk)max)) 

= 0(n + log1 (n * ht((Pk-1 ) (Pk)max))) 

= 0(n7+e log l+(nmBA)). 

By Theorem B the number of arithmetic operations required to perform Step 4 
is Q(n10 log(denom(Pk*) (Pk*)max)), which, by parts 6 and 7 of Lemma 4.3, is 
Q(n13 log(nmBA)). The size of the integers on which these oprations are performed 
are Q(n4log(denom(Pk*) * (Pk*)max)), which is Q(n7log(nmBA)). Therefore, the 
number of bit operations required to complete Step 4 is 

(4.4) Q(n 20+ log2+e (nmBA)). 

Note that this complexity bound dominates the complexity bounds of all of the 
previous steps. 

The work in Step 5 involves at most n equality tests with Pak and the other 
factors of Pk*(x) in Q[ak-1][x]. By parts 6 and 8 of Lemma 4.3, the number of 
bit operations required is Q(n4 . log(nmBA)), which is dominated by the bound in 
(4.4). 

The work involved in Step 6.i is the computation of a determinant of a matrix 
whose dimensions are at most 2n x 2n, and whose entries are polynomials in 2 
variables, of degree bounded by n, and height bounded by 

hi= max{ht((PQk 1 (Pak)max)}- 

Therefore, by parts 1 and 8 of Lemma 4.3, and Leinma 4.4, the number of bit 
operations required is 0(nl4+E . logl+e(nmBA)). Note that this work factor is 
dominated by that in (4.4). 

By part 1 of Theorem C, the number of bit operations required to compute 
gcd(Rk, R') in Step 6.ii, is O(max{log(IRk 1, log IR' 1)}2 max{deg(Rk), deg(R')} 4). 
From the definition of Rk, we have deg(R') < deg(Rk) < n2. This is the dominant 
part of Step 6.ii, and we simplify the above expression to find that Step 6.ii can be 
completed in Q(nl1 . log2 (ht(Rk))) bit operations. By part 9 of Lemma 4.3, this is 
equal to 0(n17 . log2(nmBA)) bit operations. Note that this complexity bound is 
dominated by that in (4.4). 

Step 6.iii is accomplished by first multiplying R* (x) by its denominator, and then 
dividing the resulting polynomial, denom(R*) * R*, by its content. By part 10 of 
Lemma 4.3, multiplying R*(x) by its denominator requires 0(n4+E. logl+E(nmBA)) 
bit operations. We now estimate the number of bit operations required to compute 
the content of denom(R*) - R*. Since deg Rk = deg Pak <n, this involves computing 
no more than n greatest common divisors, each one involving integers bounded by 
ht(denom(R*).R*). By the Euclidean algorithm, for any E > 0, the work to compute 
the greatest common divisor of two k-bit integers is O(log2+e (k)) bit operations. 
Therefore, by part 11 of Lemma 4.3, the number of bit operations required for 



1180 P. G. WALSH 

Step 6.iii is 

O(n. log2+e(ht(denom(R*) .R))) = O(n.7+ log2+e(nmBA)). 

Note that this complexity bound is dominated by that in (4.4). 
The work in Step 7 involves at most 2n multiplications involving integers no 

larger than Bn nmax{ht(Pak ), ht(Pk,k,1)}. By parts 3 and 4 of Lemma 4.3, the total 
number of bit operations required is O(n3+E . logl+e(nmBA)), which is dominated 
by the complexity bound in (4.4). The work in Step 8 amounts to deciding whether 
Pak is linear or not. This requires a neglible number of bit operations, and so we 
forgo any analysis of the complexity. 

By Theorem B, with f = Pak and a = ak-1, the number of arithmetic opera- 
tions required to factor pak is Q(n1 log(BA)), while each operation is performed 
on integers of size bounded by O(n5 log(BA)). Thus, the total number of bit oper- 
ations required to complete Step 9.i is Q(nl6+E. log2+e(BA)). This is dominated by 
the number of bit operations required to complete Step 4. The work to complete 
Step 9.ii involves at most n equality tests, each test requiring at most n multiplica- 
tions of integers no larger than Bn . max{(Pak )max ht(Pf-)} and so by parts 2 and 
8 of Lemma 4.3, the number of bit operations required is O(n4+E * logl+e(nmBA)). 

The work in Step 9.iii is the computation of a determinant of a matrix of size no 
larger than n + 1 by n + 1, whose entries are either 0, 1 or x -ak-1, except for the 
bottom row, whose entries consist of the coefficients of t Pak (y/t), regarded as a 
polynomial in y. By part 12 of Lemma 4.3, along with Lemma 4.4, the number of 
bit operations required to compute this determinant is 0(nlo+E . logl+e(nmBA)), 
which is dominated by the bound in (4.4). 

Step 9.iv is very similar to Step 6. A simiFar analysis as that provided for 
Step 6 shows that the number of bit operations required to complete Step 9.iv is 
O(n17 * log2+E(nmBA)), which is dominated by the complexity bound in (4.4). 

The dominating part of Step 10.i is the computation of 

gcdQ(("Ik) (PC'k 1 (ak - tkX),P Pk (X)). 

By part 2 of Theorem C, the number of bit operations required is 

O(n9 . log2 (n * max{(PQk. ((k - tkX))max,ht(Pa )} ht(Pc a)n)). 

From the fact that tk < n2, it follows that 

(Pk-l (ak - tkX))max < 2 n 4ht(P k)ht(Pkl), 

and from parts 1 and 2 of Lemma 4.3, the number of bit operations required to 
complete this is O(n13 . log2 (mBA)), which is dominated by the complexity bound 
in (4.4). 

The only significant amount of work left is in Step 10.ii.a. But this work factor 
is identical to that in Step 9.i, which is 0(nl6+E . log2+e(BA)) bit operations. 
The completion of Step lO.ii requires no more than T < 4mn2 iterations of this 
procedure, and so the total work is 

(4.5) O((7n +,Em. log2+,E (BA)). 

The work in Step 11 is essentially writing down y(x) and also computing Fk(x, y). 
The latter of these two tasks dominates, and it requires on the order of n3 mul- 
tiplications of integers no larger than O(ht(Pk,k(x))n). Therefore, by part 4 of 
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Lemma 4.3, the number of bit operations required is 0(n6+E * logl+e(mBA)). This 
is dominated by the complexity bound in (4.4). 

By the estimates in (4.4) and (4.5), the number of bit operations required to 
complete one iteration of Algorithm 1 in O(n20m log2+e (BA)). 

Let 3 be an algebraic number. Then 3 is a root of the integral polynomial 
P>:(vx), where v = denom(/3). It follows that lc(P,) ? (denom(3))deg(I) for any 
algebraic number 3. 

By the remark in the preceding paragraph, the definition of B, and Theorem A 
we have that 

B < max Bk 
1<k<4mn2 

< max 2(denom(ak ))n 
1<k<4mn2 

< [4.8(8-3 4+2.74lognel 22nh2(mn + 1)2)n]4n m 

and by [18, Lemma 2] (see also [23, Lemma 2.6] or [9, proof of Theorem 3.31]), 

A < 2(h + 1)(h(m + 1)(n +1))6mn2 

Therefore the number of bit operations to complete one iteration of Algorithm 1 is 
0(n30+em3+e * log2+e(h)). Theorem 1 now follows from the fact that T < 4mn2 
and the fact that T iterations of Algorithm 1 are required to compute the singular 
part of y(x). 
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